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Analytic gradients of dual-basis Hartree-Fock and density functional theory energies have been derived
and implemented, which provide the opportunity for capturing large basis-set gradient effects at re-
duced cost. Suggested pairings for gradient calculations are 6-31G/6-31G**, dual[-f,-d]/cc-pVTZ, and
6-311G*/6-311++G(3df,3pd). Equilibrium geometries are produced within 0.0005 Å of large-basis results
for the latter two pairings. Though a single, iterative SCF response equation must be solved (unlike standard
SCF gradients), it may be obtained in the smaller basis set, and integral screening further reduces the cost for
well-chosen subsets. Total nuclear force calculations exhibit up to 75% savings, relative to large-basis
calculations.

Introduction

The derivation and implementation of analytic energy
gradients1-9 have been a fundamental driving force for the
usefulness of computational quantum chemistry. Nuclear forces,
in particular, allow for the efficient optimization of molecular
geometries and transition states,10-13 intrinsic reaction coordi-
nates,14-16 and, more recently, ab initio molecular dynamics
(AIMD). 17-20 Density functional theory (DFT) has essentially
replaced Hartree-Fock (HF) as a stand-alone method for both
single-reference energies and gradients, due to its comparable
cost and scaling while including parametrized electron correla-
tion; however, HF is still often used as the reference energy for
subsequent perturbative correlation calculations.

Although much effort22-31 has been made to reduce the cost
of self-consistent field (SCF) energy calculations (encompassing
both DFT and HF) with respect to system size, little progress
has been made on the basis set front. Large basis sets and tight
numerical thresholds produce results that are both stable and
reliable, the kind of results required for accurate energetics and
quantitative computational chemistry. Unfortunately, this regime
of high precision and accuracy is inherently unsuited to many
of the linear scaling techniques cited above. Extended basis sets,
for example, necessarily reduce the natural sparsity in the
overlap matrix, the inverse of which is needed in most linear
scaling algorithms. Thus, although the formalN4 scaling (where
N is the total number of atomic basis functions) has been reduced
to roughly orderN with respect to system size for small basis
sets and one-dimensional systems, higher system-size scalings
are demonstrated for large basis sets, and the quartic scaling
very nearly holds true with respect to basis set size. Additionally,
large basis sets demonstrate the inherent errors of a given
method only. Accidental error cancellations do occur (as is
sometimes seen with small-basis HF molecular structures), but
these are neither wholly systematic nor transferrable across
systems. The commonly used B3LYP32,33 functional, for

example, was parametrized at the complete basis limit, and errors
ascribed to the functional itself are sometimes due to the pairing
of a small basis set (6-31G, for example) with a large-basis-
parametrized functional.34

Even linear scaling methods can prove intractable if the
computational prefactor is high enough, and two current methods
have shown noteworthy promise in this regard. Pseudospectral
(PS) methods35-39 replace the evaluation of the two-electron
integrals with numerical evaluations on a molecular grid, and
resolution of the identity (RI)/density fitting (DF)40-47 methods
expand the two-electron integrals in an atom-centered auxiliary
basis. Both methods very successfully reduce the computational
prefactor for small- to medium-sized molecules, and PS methods
additionally reduce the basis set scaling (roughlyN3). Numerical
robustness of the PS method is sometimes lacking, however,
leaving instabilities in potential energy surfaces and gradients.
RI/DF methods lack this problem and have received consider-
able recent interest. Their system-size scaling is essentially
unchanged, however, and thus leaves RI/DF unsuited to very
large molecules (although linear-scaling DF algorithms are
currently being pursued in our research group48). Although the
method described in this paper follows a unique approach to
SCF calculations, it is essentially stand-alone, and careful
application of PS or RI/DF methods may provide future
augmentations to our method for energy and analytic derivative
calculations.

In general, SCF calculations are known to converge more
quickly with respect to basis set size than correlated wave
function methods.49-51 However, heavily polarized quadruple-ú
up to even quintuple-ú basis sets are still required to approach
this convergence.49,51 Molecular structures, on the other hand,
are somewhat less sensitive to basis set effects,50 or, at the very
least, acceptable errors in structures translate to smaller errors
in energies. Still, polarization functions beyond a minimal basis
are typically required for even qualitatively correct structures,
and polarized (and possibly augmented) triple-ú or quadruple-ú
basis sets are required for quantitative convergence of structures.

The dual-basis method provides a means of perturbatively
obtaining large-basis energies at roughly small-basis cost. After
performing a fully converged SCF calculation in a small basis,
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a correction is formed from a single SCF step in the larger,
target basis. Originally devised for HF, this method has also
been applied to DFT52 and MP253-55 energies. In both cases,
large-basis bond energies are reproduced within roughly 0.02-
0.05 kcal/mol, well below the inherent error for either method
and several orders of magnitude smaller than the error due to
using the smaller basis set alone. Here, we present the derivation
and implementation of DB-SCF analytic gradients. Though the
resulting theory requires the solution of a single SCF response
equation,56 we will show that the costly iterative portion may
be solved in the small basis. This fact, combined with significant
integral screening, provides useful savings for proper basis set
pairings, in addition to the savings already inherent in the
underlying DB-SCF energy calculation.

2. Methods

In the following section, the pertinent equations governing a
dual-basis SCF gradient calculation are presented. We emphasize
that we are constructing an exact first derivative of an ap-
proximate method; no approximations have been made to the
gradient itself. The theory is presented in the unrestricted Kohn-
Sham formalism; specializations to restricted calculations and
Hartree-Fock are made when necessary. Repeated indices imply
summation.

2.1. Theory.2.1.1. Dual-Basis Energy.A DB-SCF calcula-
tion52,53 consists of a full SCF calculation in a small subset of
the larger, target basis set; subsequently, the converged density
matrix is projected into the large space and is followed by a
single Roothaan (diagonalization) step. A correction, which
accounts for first-order changes in the density matrix (or,
alternatively, accounts for orbital relaxation) following this
single SCF step, is then applied. The DB-SCF energy is
expressed as

whereEsmall is the small-basis SCF energy in the atomic orbital
(AO) basis

H is the one-electron Hamiltonian,P is the density matrix
resulting from the converged MO coefficientsC, κ is used as a
scaling parameter of the HF exchange energy to include hybrid
functionals (κ ) 1 for HF, κ ) 0 for “pure” functionals, and 0
e κ e 1 for hybrid functionals), andPtot ) PR + Pâ. The
exchange-correlation energy is represented byExc. Though this
SCF energy is defined in the small basis, eq 2 is written in the
large basis for notational simplicity. This change is permitted
since, for proper subsets, the projection of the density matrix
leaves new basis function terms unchanged.

The dual-basis energy correction is defined as

where∆P ) P′ - P is the change in the density matrix upon
diagonalization ofF, whereP′ is the post-diagonalization density
matrix. Here,F is the large-basis Fock matrix built from the
converged small-basis density matrix

where f is the exchange-correlation contribution to the Fock
matrix

First, note thatF is diagonalized by both the small-basis
converged coefficients,C, as well as the large-basis post-
diagonalization coefficients,C′ (this fact only holds for proper
subsets). Additionally, note that the exactExc is not constructed
in the large basis, for this would require an additionalExc build
after diagonalization of the Fock matrix, as well as large-basis
z-vector terms in the gradient. Instead, the exchange-correlation
contribution to the dual-basis correction is∆P‚f; the small-basis
portion does not cancel.

2.1.2. General Unrestricted Kohn-Sham Gradient and Re-
sponse Theory.The derivative of the small-basis energy with
respect to nuclear coordinatex follows the standard form, where
the superscript notation denotes a derivative and a parenthetical
superscript denotes differentiation of AO quantities only

whereS is the AO overlap integral matrix. In eq 6, the common
grouping of coefficient matrixes has been performed, resulting
in one-particle (P), two-particle (Γ), and energy-weighted (W)
density matrices. Each is defined as follows:

An analytic nuclear derivative of the DB-HF energy, then, only
requires the additional derivative of the dual-basis correction
term. By our choice of the dual-basis energy correction
(essentially a fixed-Hamiltonian formulation), derivatives with
respect to orbital rotations in the large basis vanish. However,
since the DB-SCF energy is not variationally optimized with
respect to small basis orbital rotations, derivatives with respect
to these parameters are nonzero. Solution of a single set of
coupled-perturbed SCF (CP-SCF) equations (orz-vector equa-
tions56) is required; however, because of our choice of the DB
energy correction, the iterative portion may be solved in the
small basis.

Following the form of ref 57, the nuclear derivative of a
molecular orbital coefficient is expressed as

whereUx defines an orbital response matrix andC is treated as
anx-independent constant on the right-hand side. Following the
diagonalization of the large-basis Fock matrix, a new set of MO
coefficients,C′, is obtained, producing the new density matrix,
P′. Similarly, a derivative of these new coefficients is

EDB-SCF) Esmall + ∆EDB (1)

Esmall ) Pµν
totHµν + 1

2
Pµν

tot(µν|λσ)Pλσ
tot - κ

2
Pµν

R (µλ|σν)Pλσ
R -

κ

2
P µν

â (µλ|σν)P λσ
â + Exc(P

R, P â) (2)

∆EDB ) (∆P)µν
R F µν

R + (∆P)µν
â F µν

â (3)

F µν
R ) Hµν + (µν|λσ)Pλσ

tot - κ(µλ|σν)Pλσ
R + f µν

R (PR, P â) (4)

f µν
R )

∂Exc

∂Pµν
R (5)

Esmall
x ) PµνHµν

x + Γ µνλσ
J (µν|λσ)x - κΓµνλσ

K (µλ|σν)x +

WµνSµν
x + Exc

(x) (6)

Pµν ) Pµν
tot (7)

Γ µνλσ
J ) 1

2
Pµν

tot X Pλσ
tot (8)

Γµνλσ
K ) 1

2
Pµν

R X Pλσ
R + 1

2
Pµν

â X Pλσ
â (9)

Wµν ) -Pµλ
R Fλσ

R Pσν
R - Pµλ

â Fλσ
â Pσν

â (10)

C x ) CUx (11)

(C′)x ) (C′)Ũ x (12)
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In other words, via the CP-SCF formulation, the goal is to find
the first-order responses that leave the small-basis SCF con-
verged.

With these tools in hand, the necessary derivatives are as
follows. Here, we utilize a component notation for clarity, with
the following conventions:

µ, ν, λ, ... : all AOs
p, q, r, ... : general MOs
i, j, k, ... : occupied MOs
a, b, c, ... : virtual MOs
Unless specified, all equations will be presented in the large

basis set. Unadorned MO indices will represent matrices
transformed byC, and primed MO indices will represent
matrices transformed byC′. The Fock matrixF will always be
the Fock matrix built from the (projected) small-basis density
matrix, P.

The CP-SCF equations for the orbital responses are57

and an analogousâ equation, obtained by interchange ofR T
â. TheAh matrices are defined as

where

where the implicitR functional derivative of theR exchange-
correlation matrix,f R,R, is defined as

The remaining matrices are

where ε denotes a molecular orbital energy. In the previous
equations,F(x) denotes a purely “skeleton” derivative (i.e., no
derivatives of MO coefficients).

Thez-vector method56 reduces this set of 3N equations (one
for each nuclear perturbation) to one. For a given gradient
expression, all terms multiplyingocc-Virt orbital response
matrices define a Lagrangian,L, of the formLaRiRUaRiR

x + Laâiâ

Uaâiâ
x . (Note thatLR still may contain contribution fromâ-space

quantities.) Subsequently, thex-independentz-vector is defined
as

with an analogousâ equation. Thez-vector is used to replace
occ-Virt responses as

Thus, by solving the singlez-vector equation (20), all orbital

response terms may be replaced byzand the skeleton derivative
matrices definingBx.

2.1.3. Dual-Basis Analytic Gradient.The remaining task,
therefore, is to determine the DB-SCF Lagrangian and substitute
z-vector terms when necessary. In the following equations, only
the R-space terms will be shown. As usual, the concomitant
â-space quantities may be obtained by interchange ofR T â.

We may rewrite the DB energy correction as

The first required nuclear derivative is then

where the identity,Upq
x + Uqp

x + Spq
(x) ) 0, has been used.

In the subsequent derivative term, the fact that the Fock matrix
is built fromP allows for elimination of the large-basis responses

where, in eq 24, we have used the fact that 2Ũ i′i′
x ) -1/2Si′i′

(x)

and, thus, have eliminated all large-basis responses. In both
cases,occ-Virt response elements remain. Only response ele-
ments in the small basis are required, however, despite the fact
that the Lagrangian contains contributions from large-basis
functions

In practice, the Lagrangian is actually implemented as1/2Lai

and is later symmetrized so that its contribution to the AO-
basis density matrix is formed as

AhaRiRbRjRU aRiR
x + AhaâiâbRjRU aâiâ

x ) BbRjR
x (13)

AhaRiRbRjR ) δaRbRδiRjR(εiR - εaR) + AaRiRbRjR + faRiR,bRjR + faRiR, jRbR

(14)

AaâiâbRjR ) AaâiâbRjR + faâiâ, bRjR + faâiâ, jRbR (15)

faRiR,bRkR )
∂faRiR(P

R,Pâ)

∂PbRkR
(16)

AaRiRbRjR ) 2(aRiR|bRjR) - κ(aRbR|iRjR) - κ(aRjR|iRbR)
(17)

AaâiâbRjR ) 2(aâiâ|bRjR) (18)

BbRjR
x ) FbRjR

(x) - SbRjR
(x)

εjR - 1
2
SiRkR

(x) AbRjRiRkR - 1
2
Siâkâ

(x) AbRjRiâkâ

(19)

AhaRiRbRkRzbRkR + AhaRiRbâkâzbâkâ ) -LaRiR (20)

LaRiRU aRiR
x + LaâiâU aâiâ

x ) zbRkRBbRkR
x + zbâkâBbâkâ

x (21)

Tr[(∆P)RFR] ) ∑
i′

Fi′Ri′R - ∑
i

FiRiR (22)

FiRiR
x )

d

dx[HiRiR + ∑
k

(R)

[(iRiR|kRkR) - κ(iRkR|kRiR)] +

∑
k

(â)

[(iRiR|kâkâ)] + fiRiR(P
R, Pâ)]

) F iRiR
(x) - εiRSiRiR

(x) - SjRkR
(x) [12AiRiRjRkR + fiRiR, jRkR] -

Sjâkâ
(x) [12AiRiRjâkâ + fiRiR, jâkâ] + UaRkR

x [AiRiRaRkR + fiRiR,aRkR +

fiRiR,kRaR] + Uaâkâ
x [AiRiRaâkâ + fiRiR,aâkâ + fiRiR,kâaâ]

(23)

Fi′Ri′R
x )

d

dx[Hi′Ri′R + ∑
k

(R)

[(i′Ri′R|kRkR) - κ(i′RkR|kRi′R)] +

∑
k

(â)

[(i′Ri′R|kâkâ)] + fi′Ri′R(P
R, Pâ)]

) Fi′Ri′R
(x) - 2εi′RSi′Ri′R

(x) - SjRkR
(x) [12Ai′Ri′RjRkR + fi′Ri′, jRkR] -

Sjâkâ
(x) [12Ai′Ri′Rj âkâ + fi′Ri′R, jâkâ] + UaRkR

x [Ai′Ri′RaRkR +

fi′Ri′R,aRkR + fi′Ri′R,kRaR] +

Uaâkâ
x [Ai′Ri′Raâkâ + fi′Ri′R,aâkâ + fi′Ri′R, kâaâ]

(24)

LaRiR ) 2CµaR[(µν|λσ)(∆P)λσ
tot - κ(µλ|σν)(∆P)λσ

R +

f µν,λσ
R,R (∆P)λσ

R + f µν,λσ
R,â (∆P)λσ

â ]CνiR (25)

(Pz)µν
R ) ∑

bk

CµbRzbRkRCνkR + CµkRzkRbRCνbR (26)
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With the Lagrangian in hand, the DB-SCFz-vector equation
may be solved via eq 20. In using eq 20, note that the left-hand
side may be constructed entirely in the small basis. The Fock-
like right-hand side is constructed in the large basis (using
additional dual-basis integral screening) and is projected back
into the small basis prior to the transformation into theocc-
Virt space. Once thez-vector is obtained, the remaining gradient
can be summarized in a conventional form

where

with analogousâ terms so thatP̃tot ) P̃R + P̃â, for example.
Specialization to closed-shell equations can be made by noting
that R andâ matrices are identical, and specialization to DB-
HF gradients can be made by lettingκ ) 1 andExc ) fxc ) 0.

2.2. Algorithm and Assessment.The schematic algorithm
and cost assessment for a DB-HF gradient is described below.
In assessing the cost,n refers to the number of small-basis
functions, andN refers to the number of strictly large-basis
functions. Unless otherwise specified, the scaling factors are
presented with respect to basis set size.

1. Small-Basis HF Calculation.First, a full SCF calculation
is performed in the small basis (cf. eq 2). The cost for this step
scales asO(Cn × n4/8), whereCn is the number of small-basis
HF steps required for convergence. The factor of 8 comes from
the permutational symmetry of the electron repulsion integrals.

2. Large-Basis DB-HF Correction.A single Fock matrix is
built in the large basis asF ) H + IIP + f, whereP is the
projected density matrix produced from the small-basis SCF
and II represents the full set of AO-basis electron repulsion
integrals. This Fock build (normally anO((n+N)4/8) process)
benefits from significant integral screening, as mentioned in ref
53. Integrals of the type (µν||λσ) may be eliminated ifλ or σ
are strictly large-basis functions. Though the integrals are
nonzero, their contraction withPλσ does not contribute to the
energy for the new basis functions. Thus, the screening produces
a scaling for the Fock build of

for simultaneous construction of Coulomb and exchange
matrixes. For so-called “pure” functionals (in which only
Coulomb contributions are required), the first term is reduced
to N2n2/4.

This Fock matrix is then diagonalized to obtain new MO
coefficientsC′ and a new density matrixP′. Note that the overall

savings factor (relative to an SCF calculation in the large basis)
is

As a reference point, many of our truncations haven ≈ N; the
target basis is roughly twice the size of the smaller basis set.
For this truncation ratio and roughly 12 SCF cycles,t(dual/
full) ≈ 0.12. The main savings stems from the single SCF step
in the large basis but is tempered by the need for a full SCF
calculation in the small basis. (Note that the above analysis must
be augmented for system-size scaling, as sparsity and the number
of significant shell pairs were excluded.)

Additionally, the exchange-correlation contribution has been
neglected in eq 34 and is highly dependent on the choice of
functional and quadrature grid. Though one more functional
derivative appears in the dual-basis correction than in the DFT
energy, this term is required at every step of a standard DFT
calculation anyway during the construction of the Fock matrix.
Existing DFT machinery can be used for implementation of this
term, now built fromP instead ofP′. Note also that nearly all
current functionals depend on spin densities (FR ) Pµν

R
φµφν)

and, possibly, gradient invariants (γRR ) Pµν
R ∇(φµφν)). Stan-

dard techniques, therefore, designed to screen small values of
P during the construction off, will already inherently neglect
large-basis density matrix terms and demonstrate savings in the
exchange-correlation matrix construction.

With the new density and large-basis Fock matrix, the Dual-
Basis correctionTr[∆P‚F] is calculated.

3. Gradient. Unlike standard SCF gradients, thez-vector
equations (cf. eqs 20 and 25) must be solved for a DB-SCF
gradient. However, integral screening and the fact that the
iterative portion may be solved in the small basis make the cost
tractable.

(a) The first step in the solution of thez-vector equations56

is the construction of the Lagrangian, schematically represented
asCocc[(II + f imp)(P′ - P)]Cvirt, wheref imp signifies an implicit
derivative of the XC matrix. Though the Fock-like termII (P′
- P) must rigorously be formed in the large basis, the same
screening that was exploited for the Fock build can also be used
here because of the subsequent contraction with small-basis
coefficients. This term is the secondary overall bottleneck in
the gradient calculation. After construction and contraction of
the integrals, the Fock-like matrixL is projected back into the
small basis for use in thez-vector equations.

The DFT-specific portion of the Lagrangian requires work
not present in a standard DFT calculation. One extra functional
derivative (implicit derivative, in this case) is necessary, relative
to a DFT gradient. Again, standard DFT routines can be utilized
for this term, as long as the proper contracted density (P′ - P)
is used.

(b) In the small basis, the iterativez-vector equations are
solved. The cost [O(Cz × n4/8)] is small, relative to the
Lagrangian build for large basis set truncations. By transforming
the MO-basisz-vector back to the AO basis, thez-vector’s
contribution to the 1PDM is obtained. At this stage, the DB-
SCF relaxed dipole moment may be calculated.

(c) Most pieces of the energy-weighted density matrix (cf.
eq 31) are now available. The z-vector equation givesII (P′ -
P) and f imp(P′ - P). The remainingIIPz and f imp(Pz) can be

EDB-SCF
x ) P̃µνH µν

x + Γ̃ µνλσ
J (µν|λσ)x - κΓ̃µνλσ

K (µλ|σν)x +

W̃µνSµν
x + Exc

(x) + X̃µν f µν
(x) (27)

P̃µν
R ) P′µν

R + (Pz)µν
R (28)

(Γ̃ J)µνλσ
R ) (P̃µν

R - 1
2
Pµν

R ) X Pλσ
tot (29)

(Γ̃K)µνλσ
R ) (P̃µν

R - 1
2
Pµν

R ) X Pλσ
R (30)

W̃µν
R ) -P′µλ

R Fλσ
R P′σν

R - (Pz)µλ
R F λσ

R Pσν
R - Pµγ

R [(γδ|λσ)(P̃λσ
tot -

Pλσ
tot)]Pδν

R - κPµγ
R [(γλ|σδ)(P̃λσ

R - Pλσ
R )]Pδν

R - Pµγ
R [f γδ,λσ

R,R

(P̃λσ
R - Pλσ

R )]Pδν
R - Pµγ

R [f γδ,λσ
R,â (P̃ λσ

â - Pλσ
â )]Pδν

R (31)

X̃µν
R ) P̃µν

R - Pµν
R (32)

O(3N2n2

4
+ Nn3

2
+ n4

8) (33)

t(dual
full ) ≈

[(3N2n2

4
+ Nn3

2
+ n4

8) × 1] + [n4

8
× Cn]

(n + N)4

8
× CN

(34)
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formed in the small basis, at the cost of anotherO(n4/8) step.
The contracted integrals can be read from disk, and the
remainder ofW̃ is matrix multiplications.

(d) As in a normal SCF gradient, the most significant
bottleneck is the construction and contraction of the derivative
electron repulsion integrals with the 2PDM (ΓII x). Most
importantly, this term also benefits from the same type of
integral screening discussed earlier. The “right” half ofΓ̃ in
eqs 29 and 30 isPλσ, and thus, only integral derivatives (µν||λσ)x

corresponding to small-small pairs ofλσ need to be calculated.
This screening is implemented in the same fashion as in the
Fock build and RHS integrals. Though the derivative ERIs
formally scale as 9 times the cost shown in eq 33, the current
implementation58 in Q-Chem typically scales closer to 3 times
the cost of a Fock build.

(e) The remaining DFT-only terms areExc
(x) and X̃f (x).

Although the former is a non-canceling term present in a
standard DFT gradient, the latter term is somewhat akin to a
term present only in the DFT Hessian. However, although the
standard Hessian requires mixed terms of the formPxf (y) (and
thus storage of the 3Natom × N2 explicit derivative matrix), the
DB-DFT gradient only requires the contraction with a single
density,X̃f (x), which can be folded into the functional derivative.
At this time, this efficiency improvement has not been made to
our code and represents a severe (but unnecessary) computa-
tional bottleneck. Thus, the timings presented in section 3.2 are
demonstrated for DB-HF only.

Taking into account the significant computational bottlenecks,
the relative cost factor produced by a DB-SCF gradient is

wheret xc refers to the cost of exchange-correlation contributions
in each basis set.

Note that, due to the loss of some permutational symmetry
in the integrals, aggressive basis set truncations are required in
order to demonstrate savings in the gradient alone. In then ≈
N regime, the gradient cost roughly breaks even (t ≈ 1) for
DB-HF. For any nuclear force calculation, however, the
underlying SCF calculation must be completed. The savings in
this portion alone is enough to render the total force calculation
faster. For example, assuming five z-vector iterations and 12
SCF iterations, eqs 34 and 35 can be combined to give a dual:
full ratio of roughly 0.3 forn ≈ N. In other words, an average
DB-HF nuclear force calculation is roughly three times faster
than the same job in the target basis.

2.3. Basis Set Pairings.Throughout the results provided in
the next section, several common basis set pairings, denoted as
small/target, are demonstrated. Previous tests of dual-basis

energies52,53 have demonstrated that 6-311G*59 serves as a
suitable subset for 6-311++G(3df,3pd),59-61 the largest Pople-
style optimized basis set available. We have also constructed
the analogous subset for cc-pVTZ62,63by removing the set off
functions and the inner set ofd functions on heavy atoms,
leaving a 4s3p1d subset for a4s3p2d1f target basis. The
hydrogens have their set ofd functions and the outer set ofp
functions eliminated, leaving a3s1psubset for a3s2p1dtarget
basis. This pairing is denoted dual[-f,-d]/cc-pVTZ in the
remainder of this paper. (Note that this truncation is slightly
more aggressive than the truncation used for DB-MP2 energies
in ref 53, where the Tf Q extrapolation of correlated energies
was the goal.) Although cc-pVDZ62,63 could also be used as a
subset, only proper subsets have been explored in this work
because of the savings due to integral screening at several stages
of the calculation. We have not explored any of the augmented
Dunning-type basis sets,64 although preliminary tests suggest
that aggressive truncation schemes are possible. These trunca-
tions will be the subject of future work on systems where diffuse
functions are necessary. Although the dual-basis method is best
suited for large basis sets, any improvements in the large
molecule regime (for which small basis sets may be the only
tractable option) would still be welcomed, as semiquantitative
ab initio or DFT results may still be an improvement over
molecular mechanics optimizations, in which essential chemistry
is often absent. Thus, we have included the 6-31G/6-31G**65,66

pairing as a demonstration of the dual-basis method’s ability to
capture the polarized double-ú basis set regime.

3. Results

3.1. Accuracy. The DB-SCF gradient for restricted and
unrestricted calculations has been implemented in a development
version of Q-Chem 3.0.67 Geometries for 136 open- and closed-
shell molecules (167 symmetry-unique bonds),68 for which
experimental equilibrium bond lengths are known, have been
computed at several basis set combinations, and results are
presented in Tables 1-3. (Only set-wide statistics are reported.
The full set of results is available in the Supporting Information.)
In all cases, SCF calculations were converged to a maximum
DIIS error of 10-8 a.u., and integral thresholding was set to
10-12 a.u. The convergence criteria for z-vector construction
was 10-6 a.u. The Q-Chem default geometry optimization
tolerances were used: 3× 10-4 a.u. for maximum gradient
component and either 10-6 a.u. maximum energy change or 12
× 10-4 maximum displacement between optimization cycles.
The following discussion will focus mainly upon the DB-DFT
results, for which we have used the common B3LYP32,33hybrid
functional; DB-HF results will be mentioned when distinct. The
SG-1 grid69 has been used for DFT quadrature integrations.

In the first two columns of these tables, single-basis errors
are compared, to demonstrate basis set effects on molecular
geometries. Not surprisingly, the effect of polarization functions

TABLE 1: Errors in Dual-Basis DFT Geometries, Relative to Large (Target) Basis Set Geometries in Åa

single basis dual basis

basis MAD max MAD max # above 0.01 Å % recovery

6-31G/6-31G** 0.0391 0.188 0.0070 0.049 41 82.1
6-31G*/6-31++G** 0.0046 0.073 0.0003 0.009 0 93.5
6-311G/6-311++G(3df,3pd) 0.0446 0.217 0.0087 0.071 45 80.5
6-311G*/6-311++G(3df,3pd) 0.0083 0.050 0.0004 0.010 0 95.2
dual[-f,-inner d]/cc-pVTZ 0.0190b 0.262b 0.0005 0.005 0 97.4
dual[-f,-outer d]/cc-pVTZ 0.0014 0.011 1 92.6
dual[-f,-2d]/cc-pVTZ 0.0078 0.062 40 58.9

a MAD ) mean absolute deviation; max) maximum absolute deviation.bcc-pVDZ was used as the small basis for comparison in these values.

t(dual
full ) ≈

3N2n2+2Nn3 + (Cz+5)
n4

8
+ tdual

xc

3(n + N)4

8
+ tlarge

xc

(35)
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(6-31G**) beyond a minimal basis (6-31G) is significant,
roughly 0.04 Å. The cc-pVDZf cc-pVTZ transition produces
an average absolute change of 0.019 Å. Even triple-ú-plus-
polarization geometries are not converged with respect to basis
set, as 6-311G* is still 0.008 Å from the 6-311++G(3df,3pd)
results. To put these numbers in context, the average deviation
from experiment for these three target basis sets is 0.015 (6-
31G**), 0.010 (cc-pVTZ), and 0.008 Å (6-311++G(3df,3pd)).
In other words, basis set effects are usually larger than the
inherent error of the target basis, with respect to experimental
values (again reiterating the fact that B3LYP was parametrized
at the complete basis limit).

Errors in dual-basis calculations, with respect to the target
basis set, are significantly smaller. For example, the 6-31G/6-
31G** pairing reduces the basis set error from 0.039 to only
0.007 Å (and 0.042 to 0.002 Å for HF). Although a reproduction
of target basis results would be ideal, the DB-DFT results are
still an 82% improvement over small basis calculations for this
pairing, and HF improvements are even better. For reference,
the MADs relative to experiment are 0.052 Å for 6-31G, 0.015
Å for 6-31G**, and 0.010 Å for 6-31G/6-31G**.

Other basis set pairings show considerable promise, as well.
The 6-311G*/6-311++G(3df,3pd) pairing provides a means of
capturing very large basis set effects with only 0.0004 Å average
deviation from large basis set geometries. This error is below a
common standard 0.001 Å for “chemical accuracy” in calculated
geometries and is sufficiently below the target basis error (vs
experiment) to conclude that B3LYP/6-311++G(3df,3pd) op-
timizations may be replaced by their dual-basis counterparts.

The same result is seen for the cc-pVTZ truncation. Although
B3LYP/cc-pVTZ geometries are, on average, 0.010 Å from
experimental geometries, dual[-f,-inner d]/cc-pVTZ geometries
are 0.0005 Å from their large-basis counterparts and subse-
quently within 0.010 Å of experiment. Thus, we again conclude
that dual-basis geometries may replace target basis geometries
for cc-pVTZ.

At this point, we recommend the above three pairings for
geometry optimizations. Other, more aggressive pairings were

tested, as well, with essentially one conclusion: polarization
functions are necessary in the small basis set for quantitative
reproduction of target basis results. The results for the 6-31G/
6-31G** pairing demonstrate this trend, as errors relative to
the target basis are larger than errors for the triple-ú pairings.
This pairing is retained in the context of errors relative to
experiment, however. For the triple-ú basis sets, elimination of
both sets ofd functions from cc-pVTZ resulted in average errors
of 0.008 Å; this error is still small relative to the error with
experimental values (0.019 Å) but does not sufficiently repro-
duce the target basis geometries. (Interestingly, alternative elimi-
nation of the outerd function nearly tripled the error, relative
to elimination of the innerd function.) Similar results hold for
the use of 6-311G as a subset of the large Pople-style basis set.

Finally, geometry optimizations in a given basis set are often
followed by single-point energy calculations in a larger basis.
This practice hinges on the previously mentioned fact that
molecular geometries are often less basis set dependent than
energies. The dual-basis version of this method was tested on
the same set of molecules, as well. For dual-basis 6-311G*/6-
311++G(3df,3pd) energies on 6-31G/6-31G** geometries,
absolute energy errors are 0.24 kcal/mol, relative to 6-311++G-
(3df,3pd) energies on 6-31G** geometries. Additionally, the
same comparison was made for dual[-g,-2f]/cc-pVQZ energies
on dual[-f,-inner d]/cc-pVTZ geometries. Average absolute
energy errors are only 0.026 kcal/mol. Errors in relative energies
(conformational energies, reaction energies, etc.) would presum-
ably be even lower. Thus, across both energies and gradients,
the dual-basis SCF method provides consistently accurate results.
An even more aggressive truncation for B3LYP/cc-pVQZ
energies may be possible, as well, such as retaining only the
central d function. The presented truncation was the subset
previously used for DB-MP2 energies.53

3.2. Timings.To demonstrate the savings possible for a DB-
SCF gradient calculation, nuclear force calculations on alanine
tetrapeptides, C12N4O4H22,70,71 were computed on a 2 GHz
Apple XServe with sufficient memory and a 7200 rpm hard
drive. Timings, including energy and gradient breakdowns, are
presented in Figures 1-3. The alanine tetrapeptides have
roughly the same number of heavy and hydrogen atoms and,
thus, represent a reasonably fair comparison, as our truncations
for hydrogen are typically more drastic than for heavy atoms.
Fullerene-like systems will exhibit less dramatic savings, while
saturated hydrocarbons or water clusters, for example, will
significantly improve. For reference, the target-to-subset ratio
for the three pairings on these systems is 1.83 (6-31G**), 1.98
(cc-pVTZ), and 2.33 (6-311++G(3df,3pd)). The same conver-
gence and threshold settings were used as in the previous section.
Also note that incremental Fock builds72-75 were used in these
calculations in order to present DB-HF timings on top of the
most efficient available pre-existing code.

As expected, savings are substantial for the energy portion
of a dual-basis force calculation. The 6-31G/6-31G** and

TABLE 2: Errors in Dual-Basis HF Geometries, Relative to Large (Target) Basis Set Geometries in Åa

single basis dual basis

basis MAD max MAD max # above 0.01 Å

6-31G/6-31G**b 0.0422 0.249 0.0022 0.049 3
6-31G*/6-31++G** 0.0035 0.057 0.0008 0.011 1
6-311G*/6-311++G(3df,3pd) 0.0067 0.042 0.0008 0.007 0
dual[-f]/cc-pVTZ 0.0133c 0.053c 0.0002 0.006 0
dual[-f,-inner d]/cc-pVTZ 0.0009 0.008 0
dual[-f,-2d]/cc-pVTZ 0.0018 0.016 3

a MAD ) mean absolute deviation; max) maximum absolute deviation.b The 6-31G results exclude the ClO molecule, which has a HF bond
length of 6.059Å (1.570 experimental).c cc-pVDZ was used as the small basis for comparison in these values.

TABLE 3: Errors in Dual-Basis B3LYP Geometries, in Å,
Relative to 167 Experimental Bond Lengthsa

basis MAD max

6-31G 0.0516 0.234
6-31G** 0.0146 0.139
6-31G/6-31G** 0.0098 0.075

cc-pVDZ 0.0260 0.261
cc-pVTZ 0.0100 0.072
dual[-f,-inner d]/cc-pVTZ 0.0100 0.077

6-311G* 0.0135 0.115
6-311++G(3df,3pd) 0.0081 0.078
6-311G*/6-311++G(3df,3pd) 0.0083 0.078

a MAD ) Mean absolute deviation; max) maximum absolute
deviation.
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dual[-f,-inner d]/cc-pVTZ gradients are actually slower than in
the target basis, whereas 6-311G*/6-311++G(3df,3pd) shows
noticeable savings in the gradient. Since the gradient is not the
majority cost of a standard force calculation, however, the total
job times are still reduced for all three pairings.

The small Pople-style pairing essentially represents the worst-
case scenario. The DB-HF gradient is 1.6 times longer than the
gradient for 6-31G** alone. However, savings in the underlying
HF calculation are 66%, resulting in a savings of 34% for the
total job. The triple-ú pairings demonstrate more promising
timings. The dual[-f,-inner d]/cc-pVTZ pairing produces a
gradient that is 1.5 times longer than a cc-pVTZ gradient, but

the 85% savings in the HF calculation produce a total job
savings of 50%. The 6-311G*/6-311++G(3df,3pd) pairing
demonstrates a 27% speedup in the gradient and a total job
savings of 76%. It should be emphasized that an entire DB-HF
force calculation can be obtained three times faster than the
SCF calculation alone in the target basis for the latter pairing.

4. Conclusions

Analytic gradients for a promising perturbative approach to
SCF theory have been derived and implemented. DB-SCF
gradients offer savings over standard SCF gradients at many
stages of the theory-most notably inΓII x-but the need to solve
the CP-SCF equations translates to savings in the gradient alone
for large basis set truncations only. A nuclear gradient, however,
necessarily requires an underlying SCF calculation, in which
significant savings have already been demonstrated. Thus, total
job times demonstrate savings of 34-76%. As a rule of thumb,
truncations in which the target basis is double the size of the
subset produce gradients at identical cost of the target basis and
roughly 70% savings in total nuclear force calculations.

Three basis set pairings have been presented. The 6-31G/6-
31G** pairing serves as only an approximate reproduction of
6-31G** geometries, with errors of 0.007 Å, although these
errors tend to produce geometries (statistically) closer to
experimental values. Truncations of triple-ú basis sets demon-
strate improved performance, in terms of both cost and accuracy,
once again placing dual-basis methods most well-suited to the
large basis set regime. The larger target basis sets allow for the
retention of polarization functions in the smaller basis, a
necessary requirement for near-exact reproduction of target basis
properties.

Thus, DB-SCF gradients serve as an economical means to
obtaining accurate nuclear forces for geometry optimizations
and AIMD simulations. For the large basis set regime in
particular, in which highly accurate results are obtained and
many standard SCF techniques are not completely applicable
(linear scaling methods, etc.), DB-SCF gradients provide a viable
alternative. In the large-molecule regime, however, these
acceleration techniques (as well as RI/DF methods) may still
prove worthwhile when coupled with dual-basis methods and
may serve as future research topics. Finally, the fact that the
CP-SCF equations may be solved in the small basis holds
significant promise for related research avenues. The DB/RI-
MP2 analytic gradient will be the subject of the forthcoming
paired paper, and similar applications to CIS or TD-DFT may
prove worthwhile. The DB-SCF Hessian-in which the full set
of 3N iterative response equations must be solved-holds
particular promise for future work.
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